Spring 2022 Math 290: Solutions to Exam 1

The total value of this exam is 100 points. Be sure to check your calculations carefully. Do not write your solutions on the exam sheet. At 10:50 stop working, copy your solutions and upload a pdf copy to Canvas. No solutions will be accepted after 11am. Make sure your name is on the first page of your uploaded solution set.

No calculators, phones or laptops may be used during this exam.

1. True-False and short answer questions. (5 points each)

- (i) Explain what it means for an $m \times n$ matrix A to have rank r.
- (ii) True or false: If A and B are invertible $n \times n$ matrices. Then AB is invertible. If true, give a formula for the inverse of AB; if false, explain why.
- (iii) True or False: Every $m \times n$ matrix can be put into reduced row echelon form by a sequence of elementary row operations.
- (iv) Write the following system of equations as a matrix equation:

$$\begin{aligned} 2x+3y-4z &= 7\\ -6y+\sqrt{2}z &= \pi\\ x-y+z &= 10. \end{aligned}$$
 Write down the inverse of the matrix
$$\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 7 & 1 \end{bmatrix}. \end{aligned}$$

Solution. (i) The rank of A is the number of leading ones in the reduced row echelon form of A. Alternately: If A is the coefficient matrix of a system of linear equations, the rank of A is n minus the number of independent parameters needed to describe the solution set.

- (ii) True. $(AB)^{-1} = B^{-1}A^{-1}$.
- (iii) True.

(v)

(iv)
$$\begin{bmatrix} 2 & 3 & -4 \\ 0 & -6 & \sqrt{2} \\ 1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ \pi \\ 10 \end{bmatrix}.$$

(v) The given matrix corresponds to the row operation $7 \cdot R_2 + R_3$. The inverse row operation is $-7 \cdot R_2 + R_3$.

Thus, the inverse matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -7 & 1 \end{bmatrix}$.

2. Solve the homogeneous system of equations below by using Gaussian elimination and then write your answer as a column expressed in terms of the basic solutions, using the parameters s and t. Identify the basic solutions. (35 points)

$$x + 4y - 3w = 0$$
$$-2y + z + 6w = 0$$
$$2x + 8y - 6w = 0$$
$$x + 2y + z + 3w = 0$$

Solution.

$$\begin{bmatrix} 1 & 4 & 0 & -3 & | & 0 \\ 0 & -2 & 1 & 6 & | & 0 \\ 2 & 8 & 0 & -6 & | & 0 \\ 1 & 2 & 1 & 3 & | & 0 \end{bmatrix} \xrightarrow{-2 \cdot R_1 + R_3} \begin{bmatrix} 1 & 4 & 0 & -3 & | & 0 \\ 0 & -2 & 1 & 6 & | & 0 \\ 0 & -2 & 1 & 6 & | & 0 \end{bmatrix} \xrightarrow{-1 \cdot R_2 + R_4} \begin{bmatrix} 1 & 4 & 0 & -3 & | & 0 \\ 0 & -2 & 1 & 6 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\xrightarrow{-\frac{1}{2} \cdot R_2} \begin{bmatrix} 1 & 4 & 0 & -3 & | & 0 \\ 0 & 1 & -\frac{1}{2} & -3 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{-4 \cdot R_2 + R_1} \begin{bmatrix} 1 & 0 & 2 & 9 & | & 0 \\ 0 & 1 & -\frac{1}{2} & -3 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \cdot$$

Writing the solution as a column, we have

$$\begin{bmatrix} x\\ y\\ z\\ w \end{bmatrix} = \begin{bmatrix} -2s - 9t\\ \frac{1}{2}s + 3t\\ s\\ t \end{bmatrix} = s \cdot \begin{bmatrix} -2\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} -9\\ 3\\ 0\\ 1 \end{bmatrix}.$$

Therefore, two basic solutions are $\begin{bmatrix} -2\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} -9\\ 3\\ 0\\ 1 \end{bmatrix}$.

3. If
$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 3 & 2 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, Calculate $(B \cdot A)^t + 2C^2$. (10 points)

Solution. $(B \cdot A)^t = \begin{bmatrix} 0 & 6\\ 12 & 5 \end{bmatrix}^t = \begin{bmatrix} 0 & 12\\ 6 & 5 \end{bmatrix}$. $2c^2 = 2\begin{bmatrix} 7 & 4\\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 14 & 8\\ 12 & 14 \end{bmatrix}$. $(B \cdot A)^t + 2C^2 = \begin{bmatrix} 14 & 20\\ 18 & 19 \end{bmatrix}$.

4. Suppose we are given a 3×5 matrix A, and we consecutively perform the following elementary row operations on A to obtain the new matrix B.

(i) $-3 \cdot R_3 + R_1$ (ii) $2 \cdot R_1$

(iii) $R_1 \leftrightarrow R_2$.

Find C such that CA = B. (15 points)

Solution. There are two ways to solve this problem. The easy way is to realize that the matrix C is the result of performing the indicated row operation on the identity matrix. This gives:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-3 \cdot R_3 + R_1} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{2 \cdot R_1} \begin{bmatrix} 2 & 0 & -6 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

The more standard way is to multiply the corresponding elementary matrices:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

5. Given $A = \begin{bmatrix} 0 & 1 \\ 3 & 6 \end{bmatrix}$, write A and A^{-1} as a product of elementary matrices. DO NOT multiply these products out. (15 points)

Solution. Employing elementary row operations, we have:

$$\begin{bmatrix} 0 & 1 \\ 3 & 6 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 3 & 6 \\ 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{3} \cdot R_1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \xrightarrow{-2 \cdot R_2 + R_1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

In terms of elementary matrices this becomes:

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot A = I_2,$$

which shows that $A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Taking inverses of both sides, and keeping in mind that: (i) $(A^{-1})^{-1} = A$ and (ii) the inverse of a product of matrices is the product of the inverses in reverse order, we have $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.